# Logarithm Calculator

**Log calculator** finds the logarithm function result (can be called exponent) from the given base number and a real number.

_{b}(x) = y

log_{b}(x) = y

x = log_{b}(b^{x})

**log _{b}(x) = y** is equivalent to

**x = b**

^{y}**b: ** log base number, b>0 and b≠1

**x: ** is real number, x>0

## Logarithm

**Logarithm** is considered to be one of the basic concepts in mathematics.
There are plenty of definitions, starting from really complicated and ending up with rather simple ones.
In order to answer a question, what a logarithm is, let's take a look at the table below:

2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} |

2 | 4 | 8 | 16 | 32 | 64 |

This is the table in which we can see the values of two squared, two cubed, and so on.
This is an operation in mathematics, known as **exponentiation**.
If we look at the numbers at the bottom line, we can try to find the power value to which 2 must be raised to get this number.
For example, to get 16, it is necessary to raise two to the fourth power.
And to get a 64, you need to raise two to the sixth power.

Therefore, **logarithm is the exponent to which it is necessary to raise a fixed number** (which is called the base), to get the number y.
In other words, a logarithm can be represented as the following:

log_{b} x = y

with b being the base, x being a real number, and y being an exponent.

For example, 2^{3} = 8 ⇒ log_{2} 8 = 3 (the logarithm of 8 to base 2 is equal to 3, because 2^{3} = 8).

Similarly, log_{2} 64 = 6, because 2^{6} = 64.

Therefore, it is obvious that **logarithm operation is an inverse one to exponentiation**.

2^{1} | 2^{2} | 2^{3} | 2^{4} | 2^{5} | 2^{6} |

2 | 4 | 8 | 16 | 32 | 64 |

log_{2}2 = 1 |
log_{2}4 = 2 |
log_{2}8 = 3 |
log_{2}16 = 4 |
log_{2}32 = 5 |
log_{2}64 = 6 |

Unfortunately, not all logarithms can be calculated that easily.
For example, finding log_{2} 5 is hardly possible by just using our simple calculation abilities.
After using logarithm calculator, we can find out that

log_{2} 5 = 2,32192809

There are a few specific types of logarithms. For example, the logarithm to base 2 is known as the binary logarithm, and it is widely used in computer science and programming languages. The logarithm to base 10 is usually referred to as the common logarithm, and it has a huge number of applications in engineering, scientific research, technology, etc. Finally, so called natural logarithm uses the number e (which is approximately equal to 2.71828) as its base, and this kind of logarithm has a great importance in mathematics, physics, and other precise sciences.

The **logarithm** log_{b}(x) = y is read as log base b of x is equals to y.

Please note that the **base of log** number b must be greater than 0 and must not be equal to 1.
And the number (x) which we are calculating **log** base of (b) must be a positive real number.

For example log 2 of 8 is equal to 3.

log_{2}(8) = 3 (log base 2 of 8) The exponential is 2^{3}= 8

### Common Values for Log Base

Log Base | Log Name | Notation | Log Example |
---|---|---|---|

2 | binary logarithm | lb(x) | log_{2}(16) = lb(16) = 4 => 2^{4} = 16 |

10 | common logarithm | lg(x) | log_{10}(1000) = lg(1000) = 3 => 10^{3} = 1000 |

e | natural logarithm | ln(x) | log_{e}(8) = ln(8) = 2.0794 => e^{2.0794} = 8 |

### Logarithmic Identities

List of logarithmic identites, formulas and log examples in logarithm form.

#### Logarithm of a Product

log_{b}(x·y) = log_{b}(x) + log_{b}(y) log_{2}(5·7) = log_{2}(5) + log_{2}(7)

#### Logarithm of a Quotient

log_{b}(x/y) = log_{b}(x) - log_{b}(y) log_{2}(5/7) = log_{2}(5) - log_{2}(7)

#### Logarithm of a Power

log_{b}(x^{y}) = y·log_{b}(x) log_{2}(5^{7}) = 7·log_{2}(5)

#### Change of Base

log_{b}(x) = (log_{k}(x)) / (log_{k}(b))

#### Logarithm Values Tables

List of log function values tables in common base numbers.

Number (x) | Notation | log_{2}(x) |
---|---|---|

log_{2}(1) | lb(1) | 0 |

log_{2}(2) | lb(2) | 1 |

log_{2}(3) | lb(3) | 1.584963 |

log_{2}(4) | lb(4) | 2 |

log_{2}(5) | lb(5) | 2.321928 |

log_{2}(6) | lb(6) | 2.584963 |

log_{2}(7) | lb(7) | 2.807355 |

log_{2}(8) | lb(8) | 3 |

log_{2}(9) | lb(9) | 3.169925 |

log_{2}(10) | lb(10) | 3.321928 |

log_{2}(11) | lb(11) | 3.459432 |

log_{2}(12) | lb(12) | 3.584963 |

log_{2}(13) | lb(13) | 3.70044 |

log_{2}(14) | lb(14) | 3.807355 |

log_{2}(15) | lb(15) | 3.906891 |

log_{2}(16) | lb(16) | 4 |

log_{2}(17) | lb(17) | 4.087463 |

log_{2}(18) | lb(18) | 4.169925 |

log_{2}(19) | lb(19) | 4.247928 |

log_{2}(20) | lb(20) | 4.321928 |

log_{2}(21) | lb(21) | 4.392317 |

log_{2}(22) | lb(22) | 4.459432 |

log_{2}(23) | lb(23) | 4.523562 |

log_{2}(24) | lb(24) | 4.584963 |

log_{2}(25) | lb(25) | 4.643856 |

log_{2}(26) | lb(26) | 4.70044 |

log_{2}(27) | lb(27) | 4.754888 |

log_{2}(28) | lb(28) | 4.807355 |

log_{2}(29) | lb(29) | 4.857981 |

log_{2}(30) | lb(30) | 4.906891 |

log_{2}(31) | lb(31) | 4.954196 |

log_{2}(32) | lb(32) | 5 |

log_{2}(33) | lb(33) | 5.044394 |

log_{2}(34) | lb(34) | 5.087463 |

log_{2}(35) | lb(35) | 5.129283 |

log_{2}(36) | lb(36) | 5.169925 |

log_{2}(37) | lb(37) | 5.209453 |

log_{2}(38) | lb(38) | 5.247928 |

log_{2}(39) | lb(39) | 5.285402 |

log_{2}(40) | lb(40) | 5.321928 |

log_{2}(41) | lb(41) | 5.357552 |

log_{2}(42) | lb(42) | 5.392317 |

log_{2}(43) | lb(43) | 5.426265 |

log_{2}(44) | lb(44) | 5.459432 |

log_{2}(45) | lb(45) | 5.491853 |

log_{2}(46) | lb(46) | 5.523562 |

log_{2}(47) | lb(47) | 5.554589 |

log_{2}(48) | lb(48) | 5.584963 |

log_{2}(49) | lb(49) | 5.61471 |

log_{2}(50) | lb(50) | 5.643856 |

log_{2}(51) | lb(51) | 5.672425 |

log_{2}(52) | lb(52) | 5.70044 |

log_{2}(53) | lb(53) | 5.72792 |

log_{2}(54) | lb(54) | 5.754888 |

log_{2}(55) | lb(55) | 5.78136 |

log_{2}(56) | lb(56) | 5.807355 |

log_{2}(57) | lb(57) | 5.83289 |

log_{2}(58) | lb(58) | 5.857981 |

log_{2}(59) | lb(59) | 5.882643 |

log_{2}(60) | lb(60) | 5.906891 |

log_{2}(61) | lb(61) | 5.930737 |

log_{2}(62) | lb(62) | 5.954196 |

log_{2}(63) | lb(63) | 5.97728 |

log_{2}(64) | lb(64) | 6 |

Number (x) | Notation | log_{10}(x) |
---|---|---|

log_{10}(1) | log(1) | 0 |

log_{10}(2) | log(2) | 0.30103 |

log_{10}(3) | log(3) | 0.477121 |

log_{10}(4) | log(4) | 0.60206 |

log_{10}(5) | log(5) | 0.69897 |

log_{10}(6) | log(6) | 0.778151 |

log_{10}(7) | log(7) | 0.845098 |

log_{10}(8) | log(8) | 0.90309 |

log_{10}(9) | log(9) | 0.954243 |

log_{10}(10) | log(10) | 1 |

log_{10}(11) | log(11) | 1.041393 |

log_{10}(12) | log(12) | 1.079181 |

log_{10}(13) | log(13) | 1.113943 |

log_{10}(14) | log(14) | 1.146128 |

log_{10}(15) | log(15) | 1.176091 |

log_{10}(16) | log(16) | 1.20412 |

log_{10}(17) | log(17) | 1.230449 |

log_{10}(18) | log(18) | 1.255273 |

log_{10}(19) | log(19) | 1.278754 |

log_{10}(20) | log(20) | 1.30103 |

log_{10}(21) | log(21) | 1.322219 |

log_{10}(22) | log(22) | 1.342423 |

log_{10}(23) | log(23) | 1.361728 |

log_{10}(24) | log(24) | 1.380211 |

log_{10}(25) | log(25) | 1.39794 |

log_{10}(26) | log(26) | 1.414973 |

log_{10}(27) | log(27) | 1.431364 |

log_{10}(28) | log(28) | 1.447158 |

log_{10}(29) | log(29) | 1.462398 |

log_{10}(30) | log(30) | 1.477121 |

log_{10}(31) | log(31) | 1.491362 |

log_{10}(32) | log(32) | 1.50515 |

log_{10}(33) | log(33) | 1.518514 |

log_{10}(34) | log(34) | 1.531479 |

log_{10}(35) | log(35) | 1.544068 |

log_{10}(36) | log(36) | 1.556303 |

log_{10}(37) | log(37) | 1.568202 |

log_{10}(38) | log(38) | 1.579784 |

log_{10}(39) | log(39) | 1.591065 |

log_{10}(40) | log(40) | 1.60206 |

log_{10}(41) | log(41) | 1.612784 |

log_{10}(42) | log(42) | 1.623249 |

log_{10}(43) | log(43) | 1.633468 |

log_{10}(44) | log(44) | 1.643453 |

log_{10}(45) | log(45) | 1.653213 |

log_{10}(46) | log(46) | 1.662758 |

log_{10}(47) | log(47) | 1.672098 |

log_{10}(48) | log(48) | 1.681241 |

log_{10}(49) | log(49) | 1.690196 |

log_{10}(50) | log(50) | 1.69897 |

log_{10}(51) | log(51) | 1.70757 |

log_{10}(52) | log(52) | 1.716003 |

log_{10}(53) | log(53) | 1.724276 |

log_{10}(54) | log(54) | 1.732394 |

log_{10}(55) | log(55) | 1.740363 |

log_{10}(56) | log(56) | 1.748188 |

log_{10}(57) | log(57) | 1.755875 |

log_{10}(58) | log(58) | 1.763428 |

log_{10}(59) | log(59) | 1.770852 |

log_{10}(60) | log(60) | 1.778151 |

log_{10}(61) | log(61) | 1.78533 |

log_{10}(62) | log(62) | 1.792392 |

log_{10}(63) | log(63) | 1.799341 |

log_{10}(64) | log(64) | 1.80618 |

Number (x) | Notation | ln(x) |
---|---|---|

log_{e}(1) | ln(1) | 0 |

log_{e}(2) | ln(2) | 0.693147 |

log_{e}(3) | ln(3) | 1.098612 |

log_{e}(4) | ln(4) | 1.386294 |

log_{e}(5) | ln(5) | 1.609438 |

log_{e}(6) | ln(6) | 1.791759 |

log_{e}(7) | ln(7) | 1.94591 |

log_{e}(8) | ln(8) | 2.079442 |

log_{e}(9) | ln(9) | 2.197225 |

log_{e}(10) | ln(10) | 2.302585 |

log_{e}(11) | ln(11) | 2.397895 |

log_{e}(12) | ln(12) | 2.484907 |

log_{e}(13) | ln(13) | 2.564949 |

log_{e}(14) | ln(14) | 2.639057 |

log_{e}(15) | ln(15) | 2.70805 |

log_{e}(16) | ln(16) | 2.772589 |

log_{e}(17) | ln(17) | 2.833213 |

log_{e}(18) | ln(18) | 2.890372 |

log_{e}(19) | ln(19) | 2.944439 |

log_{e}(20) | ln(20) | 2.995732 |

log_{e}(21) | ln(21) | 3.044522 |

log_{e}(22) | ln(22) | 3.091042 |

log_{e}(23) | ln(23) | 3.135494 |

log_{e}(24) | ln(24) | 3.178054 |

log_{e}(25) | ln(25) | 3.218876 |

log_{e}(26) | ln(26) | 3.258097 |

log_{e}(27) | ln(27) | 3.295837 |

log_{e}(28) | ln(28) | 3.332205 |

log_{e}(29) | ln(29) | 3.367296 |

log_{e}(30) | ln(30) | 3.401197 |

log_{e}(31) | ln(31) | 3.433987 |

log_{e}(32) | ln(32) | 3.465736 |

log_{e}(33) | ln(33) | 3.496508 |

log_{e}(34) | ln(34) | 3.526361 |

log_{e}(35) | ln(35) | 3.555348 |

log_{e}(36) | ln(36) | 3.583519 |

log_{e}(37) | ln(37) | 3.610918 |

log_{e}(38) | ln(38) | 3.637586 |

log_{e}(39) | ln(39) | 3.663562 |

log_{e}(40) | ln(40) | 3.688879 |

log_{e}(41) | ln(41) | 3.713572 |

log_{e}(42) | ln(42) | 3.73767 |

log_{e}(43) | ln(43) | 3.7612 |

log_{e}(44) | ln(44) | 3.78419 |

log_{e}(45) | ln(45) | 3.806662 |

log_{e}(46) | ln(46) | 3.828641 |

log_{e}(47) | ln(47) | 3.850148 |

log_{e}(48) | ln(48) | 3.871201 |

log_{e}(49) | ln(49) | 3.89182 |

log_{e}(50) | ln(50) | 3.912023 |

log_{e}(51) | ln(51) | 3.931826 |

log_{e}(52) | ln(52) | 3.951244 |

log_{e}(53) | ln(53) | 3.970292 |

log_{e}(54) | ln(54) | 3.988984 |

log_{e}(55) | ln(55) | 4.007333 |

log_{e}(56) | ln(56) | 4.025352 |

log_{e}(57) | ln(57) | 4.043051 |

log_{e}(58) | ln(58) | 4.060443 |

log_{e}(59) | ln(59) | 4.077537 |

log_{e}(60) | ln(60) | 4.094345 |

log_{e}(61) | ln(61) | 4.110874 |

log_{e}(62) | ln(62) | 4.127134 |

log_{e}(63) | ln(63) | 4.143135 |

log_{e}(64) | ln(64) | 4.158883 |

##### Helpful Logarithm References

- Log functions (Lamar Edu)
- Logarithm (Utah Edu)

## Recent Comments

LOG(2*+1)LOG BASE10(3*-2)=1FIND*

plz can u solve dis for me now evaluate 2 log 2+4 log''8 2-3 log 2''6 4

Plss log0.8621 base 12

Please solve log2 base x + 48logx base 2=14

find the value log1(2) or log1(1)

What is the value of log(1/2)¹²

Please solve log a base x + log e base x^6 please it is of differentiation

How to solve log base3 56

Thanks for giving us such facilities

Please can you solve this equation?

Logp y=0.2356,solve log p|y

loga+logb+logc+logd=100 abcd

Pls help with this question and I need the solution now pls:3/2 Log 27-3 Log 5 into square root of 5 divided by Log 0.4

y = log(8 + x/10) x=5.0 need help salving for Y=

It is good for students

How to calculate 1/2 log c-1/2 log c/10 step by step

1/2 log (10^-2)

2 log base10 2-1.2 kidly solve it step by step

logs are difficult to solve bt through the use of this site l have been helped a lot s

pls wat is answer for 23 log10raise to power of 3

36 log 0,2

value of log1/13

log[2](3)=a

log[5](9)=b

log[40](6)=?

thank you

solve:

log12(20)=y-2

Bitte um Hilfe !

log2 [3+log4 (5+log6 (x))]=2

Use fact that log2base10 and x=4,find the value of log10base x2.

log x square base 2 minus log x base 2 equals 3 solve x

how to solve : lg24*lgx^2=5lg12

help me out with this question.log2base4×log4base2

log10(a) + log10(b) = 2

sqrt(a) + sqrt(b) = 8

Possible values of a and b?

Evaluate log27 base 3 + log8 base 2

Logx+log15=log45

Special math

Logx+log15=log45

Hey what is 7log2 - 1/2log16 +log3

solving for (log 3^3/2 - log 2^3/2)/ log3/2

PLEASE solve the following :(log27)(log36)/(log216)(log3). Without using log table.

Thanks

Given 49 raised to the power log z to the base 7 = 2 . Find the variable

Value of Iog 1/5

Please help with this equation. Log×=3log1.2+2log(1/3√10)-log0.96

thanks

thanks

Can you please solve, with an explanation, "simplify the product (log(216,28))(log2,6) + log(√(7),6))".

Whtat is the value of log 2*pi

Can u pls solve log 25 square of 3 +log 2 square root of 3 -log 7 square of 3

1/3log 64

Never mind I figured it out. thank you any way

t= 11/2xlog10(0.7)/log10(1/2)

equals approximately 2.8 billion

t = 11/2 x log10(0.7)/log10(1/2)

equals approximately 2.8billion How do you get this answer?

How to solve for

[1*10^-14]*[2*10^-8]

How to solve 20^log5/5^log2